Height fluctuations in interacting dimers

F. Toninelli, CNRS and Université Lyon 1
in collaboration with A. Giuliani (Roma 3) and V. Mastropietro
(Milan)

Limis shapes, ICERM, April 2015
Perfect matchings of \mathbb{Z}^2 and height function

Height function:

$$h(f') - h(f) = \sum_{b \in C_{f \rightarrow f'}} \sigma_b (1_{b \in M} - 1/4)$$

where $\sigma_b = +1$ if b crossed with white on the right/left.
Perfect matchings of \mathbb{Z}^2 and height function

Height function:

$$h(f') - h(f) = \sum_{b \in C_{f \rightarrow f'}} \sigma_b (1_{b \in M} - 1/4)$$

where $\sigma_b = +1/ -1$ if b crossed with white on the right/left.

Crucial observation: white-to-black flux $(1_{b \in M} - 1/4)$ is divergence-free. Important point: \mathbb{Z}^2 is bipartite.
Non-interacting dimers (or uniform perfect matchings)

If Λ is a large domain, e.g. the $2L \times 2L$ square/torus, many ($\approx \exp(cL^2)$) perfect matchings exist.

Call $\langle \cdot \rangle_{\Lambda;0}$ the uniform measure.
Non-interacting dimers (or uniform perfect matchings)

If Λ is a large domain, e.g. the $2L \times 2L$ square/torus, many ($\approx \exp(cL^2)$) perfect matchings exist.

Call $\langle \cdot \rangle_{\Lambda;0}$ the uniform measure.

Observe:

- By symmetry, on the torus, $\langle 1_{b \in M} \rangle_{\Lambda;0} = 1/4$ for every b, so that $\langle h(f) - h(f') \rangle_{\Lambda;0} = 0$.
- Dimers do not interact (except for hard-core constraint).
Non-interacting dimers (or uniform perfect matchings)

Known facts:

- Dimer-dimer correlations decay slowly:

\[\lim_{\Lambda \rightarrow \mathbb{Z}^2} \langle 1_{b \in M} \; 1_{b' \in M} \rangle_{\Lambda,0} \approx |b - b'|^{-2} \]
Non-interacting dimers (or uniform perfect matchings)

Known facts:

- Dimer-dimer correlations decay slowly:
 \[
 \lim_{\Lambda \to \mathbb{Z}^2} \langle 1_{b \in M} ; 1_{b' \in M} \rangle_{\Lambda,0} \approx |b - b'|^{-2}
 \]

- Height fluctuations grow logarithmically:
 \[
 \lim_{\Lambda \to \mathbb{Z}^2} \text{Var}_{\Lambda,0}(h(f) - h(f')) \sim \frac{1}{\pi^2} \log |f - f'| \quad \text{as} \quad |f - f'| \to \infty
 \]

(see Kenyon-Okounkov-Sheffield for general bipartite graphs, periodic b.c.)
Non-interacting dimers (or uniform perfect matchings)

Known facts:

- Dimer-dimer correlations decay slowly:

\[\lim_{\Lambda \to \mathbb{Z}^2} \langle 1_{b \in M} ; 1_{b' \in M} \rangle_{\Lambda,0} \approx |b - b'|^{-2} \]

- Height fluctuations grow logarithmically:

\[\lim_{\Lambda \to \mathbb{Z}^2} \text{Var}_{\Lambda,0}(h(f) - h(f')) \sim \frac{1}{\pi^2} \log |f - f'| \quad \text{as} \quad |f - f'| \to \infty \]

(see Kenyon-Okounkov-Sheffield for general bipartite graphs, periodic b.c.)

- the height field is asymptotically Gaussian: for \(m \geq 3 \), the \(m \)th cumulant of \(h(f) - h(f') \) is

\[\langle h(f) - h(f') ; m \rangle_{\Lambda,0} = o(\text{Var}_{\Lambda,0}(h(f) - h(f'))^{m/2}). \]

(recall: cumulants of \(X \) are zero for \(m \geq 3 \) iff \(X \) is Gaussian)
Interacting dimers

Associate an energy $\lambda \in \mathbb{R}$ to adjacent dimers:

I.e., with $N(M)$ the number of adjacent pairs of dimers in M,

$$\langle \cdot \rangle_{\Lambda,\lambda} = \frac{\sum_M e^{\lambda N(M)}}{Z_{\Lambda,\lambda}}.$$

Theorem [Giuliani, Mastropietro, T. 2014] If $|\lambda| \leq \lambda_0$ then:

- Fluctuations still grow logarithmically:

$$\lim_{\Lambda \to \mathbb{Z}^2} \text{Var}_{\Lambda,\lambda}(h(f) - h(f')) \sim \frac{K(\lambda)}{\pi^2} \log |f - f'|$$

with $K(\cdot)$ analytic and $K(0) = 1$;

- for $m \geq 3$, the m^{th} cumulant of $h(f) - h(f')$ is bounded:

$$\sup_{f,f'} \lim_{\Lambda \to \mathbb{Z}^2} \langle h(f) - h(f'); m \rangle_{\Lambda,\lambda} \leq C(m).$$
Interacting dimers

- **Convergence to the GFF**
 If $|\lambda| \leq \lambda_0$ then convergence to Gaussian Free Field: if $\varphi \in C_0^\infty(\mathbb{R}^2)$ with $\int_{\mathbb{R}^2} \varphi(x)\,dx = 0$ then, as $\epsilon \to 0$,

 $$
 \epsilon^2 \sum_f \varphi(\epsilon f) h(f) \Rightarrow \int_{\mathbb{R}^2} \varphi(x) X(x) \,dx
 $$

 with X the Gaussian Free Field of covariance

 $$
 - \frac{K(\lambda)}{2\pi^2} \log |x - y|.
 $$
Comments

- System remains “critical” even for $\lambda \neq 0$.

λ is a parameter in the system, and Λ represents a suitable discretization of the domain $D \subset \mathbb{C}$.
Comments

- System remains “critical” even for $\lambda \neq 0$.
- Theorem proven with periodic boundary conditions.
Comments

- System remains “critical” even for $\lambda \neq 0$.
- Theorem proven with periodic boundary conditions.
- For $\lambda = 0$, Kenyon ’00 proves conformal invariance of height moments e.g.

$$g_D(x, y) = \lim_{L \to \infty} \langle (h_x - \langle h_x \rangle_{\Lambda, 0})(h_y - \langle h_y \rangle_{\Lambda, 0}) \rangle_{\Lambda, 0}$$

(lattice spacing $1/L$ tends to zero, Λ is suitable discretization of domain $D \subset \mathbb{C}$ and x, y tend to distinct points)

Challenge: proof for $\lambda \neq 0$
Non-interacting dimers: Kasteleyn theory

Partition functions and correlations given by determinants (or Pfaffians)

Define an antisymmetric $|\Lambda| \times |\Lambda|$ matrix K, indexed by lattice sites, as $K(x, x \pm e_1) = \pm 1$, $K(x, x \pm e_2) = \pm i$ and zero otherwise. Then,

$$Z = \sum_M 1 = Pf(K)$$

with, for antisymmetric $2n \times 2n$ matrix A,

$$Pf(A) = \frac{1}{2^n n!} \sum_{\pi} (-1)^\pi A_{\pi(1)} A_{\pi(2)} \cdots A_{\pi(2n-1)} A_{\pi(2n)}.$$
Non-interacting dimers: Kasteleyn theory

Similarly, if \(b_1 = (x_1, x_2) \), \(b_2 = (x_3, x_4) \) are two bonds \((x_i \in \mathbb{Z}^2, |x_1 - x_2| = |x_3 - x_4| = 1) \), then

\[
\langle 1_{b_1 \in M} 1_{b_2 \in M} \rangle_{\wedge, 0} = K(b_1)K(b_2)\text{Pf}(M)
\]

with \(M \) the \(4 \times 4 \) matrix with \(M_{ij} = K^{-1}(x_i, x_j) \).

E.g.

\[
\langle 1_{(x, x + e_1) \in M} 1_{(y, y + e_1) \in M} \rangle_{\wedge, 0} = K^{-1}(x, x + e_1)K^{-1}(y, y + e_1) - K^{-1}(x, y + e_1)K^{-1}(y, x + e_1)
\]
Inverse Kasteleyn matrix (or “propagator”)

The inverse matrix K^{-1} can be computed explicitly, diagonalizing K:

$$
\lim_{\Lambda \to \mathbb{Z}^2} K^{-1}(x, y) = \int_{[-\pi, \pi]^2} \frac{dk}{(2\pi)^2} \frac{e^{-ik(x-y)}}{-i \sin k_1 + \sin k_2}
$$

Singularities at $(k_1, k_2) = (0, 0), (\pi, 0), (\pi, \pi), (0, \pi)$ produce $|x - y|^{-1}$ decay of K^{-1}:

$$
K^{-1}(x, 0) \xrightarrow{|x| \to \infty} \frac{1}{2\pi} \left[\frac{1}{x_1 + ix_2} + \frac{(-1)^x_2}{x_1 - ix_2} \right]
$$
Back to height fluctuations (free case)

Recall $h(f') - h(f) = \sum_{b\in C_f \to f'} \sigma_b (1_{b\in M} - 1/4)$

One finds

$$\sigma_b \sigma_{b'} \lim_{\Lambda \to \mathbb{Z}^2} \langle 1_{b\in M}; 1_{b'\in M} \rangle_{\Lambda,0} = A_{b,b'} + B_{b,b'} + C_{b,b'}$$

$$= -\frac{1}{2\pi^2} \Re \left[\Delta z_b \Delta z_{b'} \frac{1}{(z_b - z_{b'})^2} \right]$$

$$+ \text{Osc}(z_b, z_{b'}) \frac{1}{|z_b - z_{b'}|^2} + O(|z_b - z_{b'}|^{-3}).$$

Then [Kenyon-Okounkov-Sheffield ’06],

$$\sum_{b\in C_f \to f', b'\in C_{f'} \to f'} A_{b,b'} \sim -\frac{1}{2\pi^2} \Re \int_f^{f'} \frac{dz dz'}{(z - z')^2} = \frac{1}{\pi^2} \log |f - f'|.$$
Dimer-dimer correlations, interacting case

Theorem If \(\lambda \) is small, then

\[
\begin{align*}
\sigma_b \sigma_{b'} \lim_{\Lambda \to \mathbb{Z}^2} \langle 1_{b \in M}; 1_{b' \in M} \rangle_{\Lambda, \lambda} &= -\frac{K(\lambda)}{2\pi^2} \Re \left[\Delta z_b \Delta z_{b'} \frac{1}{(z_b - z_{b'})^2} \right] \\
&+ \text{Osc}(z_b, z_{b'}) \frac{1}{|z_b - z_{b'}|^{2+\eta(\lambda)}} + O(|z_b - z_{b'}|^{-3+O(\lambda)}).
\end{align*}
\]

with \(K(\cdot), \eta(\cdot) \) analytic and \(K(0) = 1, \eta(0) = 0. \)
Dimer-dimer correlations, interacting case

Theorem If \(\lambda \) is small, then

\[
\sigma_b \sigma_{b'} \lim_{\Lambda \to \mathbb{Z}^2} \langle 1_{b \in M}; 1_{b' \in M} \rangle_{\Lambda, \lambda} = -\frac{K(\lambda)}{2\pi^2} \Re \left[\Delta z_b \Delta z_{b'} \frac{1}{(z_b - z_{b'})^2} \right] + \mathcal{O}(z_b - z_{b'})^{2+\eta(\lambda)} + O(|z_b - z_{b'}|^{-3+O(\lambda)}).
\]

with \(K(\cdot), \eta(\cdot) \) analytic and \(K(0) = 1, \eta(0) = 0 \).

Note:

- in the main term the critical exponent remains 2
- in the oscillating term it changes to \(2 + \eta(\lambda) \) (non-universal).
Non-interacting dimers: “lattice free fermions”

Algebraic identity: Pfaffian can be written as “Grassmann Gaussian integral”

\[
\{\psi_x\}_{x \in \Lambda} \text{ Grassmann variables: } \psi_x \psi_y = -\psi_y \psi_x \text{ and } \psi_x^2 = 0.
\]
Non-interacting dimers: “lattice free fermions”

Algebraic identity: Pfaffian can be written as “Grassmann Gaussian integral”

\[\{ \psi_x \}_{x \in \Lambda} \]

Grassmann variables: \(\psi_x \psi_y = -\psi_y \psi_x \) and \(\psi_x^2 = 0 \).

All functions are polynomials: for instance,

\[
e^{\psi_x} = 1 + \psi_x + \psi_x^2/2 + ... = 1 + \psi_x
\]
Non-interacting dimers: “lattice free fermions”

Algebraic identity: Pfaffian can be written as “Grassmann Gaussian integral”

\{\psi_x\}_{x \in \Lambda} Grassmann variables: \(\psi_x \psi_y = -\psi_y \psi_x\) and \(\psi_x^2 = 0\).

All functions are polynomials: for instance,

\[e^{\psi_x} = 1 + \psi_x + \frac{\psi_x^2}{2} + ... = 1 + \psi_x \]

Integration rules:

\[\int \prod_{i=1}^{n} d\psi_i \, \psi_n \ldots \psi_1 = 1 \]

and

\[\int \prod_{i=1}^{n} d\psi_i \, \psi_k \ldots \psi_1 = 0 \quad k < n. \]
Then,

\[Pf(K) = \int \prod_{u \in \Lambda} d\psi_u e^{-\frac{1}{2} (\psi, K\psi)} \]

and

\[K^{-1}(x, y) = \langle \psi_x \psi_y \rangle_0 := \frac{1}{Pf(K)} \int \prod_{u \in \Lambda} d\psi_u e^{-\frac{1}{2} (\psi, K\psi)} \psi_x \psi_y. \]

Also “fermionic Wick theorem”:

\[\langle \psi_{x_1} \cdots \psi_{x_{2n}} \rangle_0 = \sum_{\text{pairings } \pi} \sigma_{\pi} \langle \psi_{x_{\pi(1)}} \psi_{x_{\pi(2)}} \rangle_0 \times \cdots \times \langle \psi_{x_{\pi(2n-1)}} \psi_{x_{\pi(2n)}} \rangle_0 \]
Then,

\[Pf(K) = \int \prod_{u \in \Lambda} d\psi_u e^{-\frac{1}{2}(\psi, K\psi)} \]

and

\[K^{-1}(x, y) = \langle \psi_x \psi_y \rangle_0 := \frac{1}{Pf(K)} \int \prod_{u \in \Lambda} d\psi_u e^{-\frac{1}{2}(\psi, K\psi)} \psi_x \psi_y. \]

Also “fermionic Wick theorem”:

\[\langle \psi_{x_1} \cdots \psi_{x_{2n}} \rangle_0 = \sum_{pairings \ \pi} \sigma_\pi \langle \psi_{x_{\pi(1)}} \psi_{x_{\pi(2)}} \rangle_0 \times \cdots \times \langle \psi_{x_{\pi(2n-1)}} \psi_{x_{\pi(2n)}} \rangle_0 \]

“Fermions” because of anticommutation, “free” because exponential of quadratic form
Interacting dimers as interacting fermions

Similarly, the partition function of the interacting model is written as

\[Z_{\Lambda, \lambda} = \frac{1}{Pf(K)} \int \prod d\psi_x \exp \left(-\frac{1}{2} (\psi, K \psi) + V(\psi) \right) = \left\langle \exp(V(\psi)) \right\rangle_{\Lambda, 0} \]

with

\[V(\psi) = V_4(\psi) + V_6(\psi) + \ldots, \]

and

\[V_4(\psi) = \lambda \sum_x \psi_x \psi_{x+e_1} \psi_{x+e_2} \psi_{x+e_1+e_2}, \]
Similarly, the partition function of the interacting model is written as

$$Z_{\Lambda, \lambda} = \frac{1}{Pf(K)} \int \prod d\psi_x \exp\left(-\frac{1}{2}(\psi, K\psi) + V(\psi) \right) \equiv \left\langle \exp(V(\psi)) \right\rangle_{\Lambda,0}$$

with

$$V(\psi) = V_4(\psi) + V_6(\psi) + \ldots,$$

and

$$V_4(\psi) = \lambda \sum_x \psi_x \psi_{x+e_1} \psi_{x+e_2} \psi_{x+e_1+e_2},$$

NB: for finite Λ, these are just exact identities, V is a polynomial (finite degree).
Difficulties I: a combinatorial problem

Naif approach: perturbative expansion in λ

$$\langle \exp(V(\psi)) \rangle_{\Lambda,0} = \sum_n \frac{1}{n!} \langle V(\psi)^n \rangle_{\Lambda,0}.$$

Each expectation is computed via Wick’s rule as sum of “Feynman diagrams”. However, number of pairings is at least $(n!)^2$. Not summable.
Difficulties I: a combinatorial problem

Naïf approach: perturbative expansion in λ

$$\left\langle \exp(V(\psi)) \right\rangle_{\Lambda,0} = \sum_n \frac{1}{n!} \langle V(\psi)^n \rangle_{\Lambda,0}.$$

Each expectation is computed via Wick’s rule as sum of “Feynman diagrams”. However, number of pairings is at least $(n!)^2$. Not summable.

Solution: anticommutation rules \Rightarrow relative signs \Rightarrow gain a factor $n!$ (ideas form the ’80s, QFT; e.g. Gawedzki-Kupiaienen ’86,...).
Difficulties II: “infrared problem”

Due to slow decay of two-point function K^{-1}, many Fenyman diagrams are divergent (as $\Lambda \rightarrow \infty$).

A typical problem in Quantum Field Theory with massless fields.
Difficulties II: “infrared problem”

Due to slow decay of two-point function K^{-1}, many Feynman diagrams are divergent (as $\Lambda \to \infty$).

A typical problem in Quantum Field Theory with massless fields.

At lowest order in perturbation theory, one can check that divergences cancel. Impossible to do this order by order
Difficulties II: “infrared problem”

Due to slow decay of two-point function K^{-1}, many Feynman diagrams are divergent (as $\Lambda \rightarrow \infty$).

A typical problem in Quantum Field Theory with massless fields. At lowest order in perturbation theory, one can check that divergences cancel. Impossible to do this order by order.

Constructive QFT (Benfatto, Brydges, Gallavotti, Gawedzki, Kupiainen, Rivasseau, Spencer...) provides the right tools to cure these problems.
Step 1: a change of variables

Decompose $K^{(-1)}(x, y) = \langle \psi_x \psi_y \rangle_0$ around the 4 singularities $p_1 = (0, 0), p_2 = (\pi, 0), p_3 = (\pi, \pi), p_4 = (0, \pi)$:

$$K^{-1}(x, y) = \sum_{\gamma=1}^{4} \int \frac{dk}{(2\pi)^2} \chi(k - p_\gamma) \frac{e^{-ik(x-y)}}{-i \sin k_1 + \sin k_2}$$ \hspace{1cm} (1)

i.e. rewrite

$$\psi_x = e^{ip_1 x} \psi_{x,1} + ie^{ip_2 x} \psi_{x,2} + ie^{ip_3 x} \psi_{x,3} + e^{ip_4 x} \psi_{x,4}$$

with

$$\langle \psi_x, \gamma \psi_y, \gamma' \rangle_0 = \delta_{\gamma, \gamma'} \int \frac{dk}{(2\pi)^2} \chi(k) \frac{e^{-ik(x-y)}}{-i \sin k_1 + (-1)^{\gamma+1} \sin k_2}$$

$$\sim \frac{\delta_{\gamma, \gamma'}}{4\pi} \frac{1}{(x_1 - y_1) + i(-1)^{\gamma+1}(x_2 - y_2)}$$
Step 1: a change of variables

This way, $V(\psi)$ becomes

$$V(\psi) = \lambda \sum \psi_{x,1} \psi_{x,2} \psi_{x,3} \psi_{x,4} + \text{higher order},$$
Step 2: multi-scale integration

- multiscale decomposition of the “free propagator” or of the field:
 \[\psi_{x,\gamma} = \psi_{x,\gamma}^{(0)} + \psi_{x,\gamma}^{(-1)} + \psi_{x,\gamma}^{(-2)} + \cdots \]

 for each \(\psi_{x,\gamma}^{(h)} \), integration restricted to \(k \approx 2^h \);

- multiscale integration starting from short-distance scales: at each scale \(h \), effective potential

 \[V^{(h)}(\psi_{\leq h}) = \lambda^{(h)} \sum_{x} \psi_{x,1}^{\leq h} \psi_{x,2}^{\leq h} \psi_{x,3}^{\leq h} \psi_{x,4}^{\leq h} + \text{higher order} \]

- flow equation for the effective coupling:
 \[\lambda^{(h)} = \lambda^{(h+1)} + \beta(\lambda^{(h+1)}, \ldots, \lambda^{(0)}) \]

- key question: behavior of \(\lambda^{(h)} \) as \(h \to -\infty \).
Step 3: comparison with “relativistic model”

Important fact: the function $\beta(...)$ vanishes asymptotically for $h \to -\infty$, and $\lambda^{(h)} \to \lambda_{-\infty} = \lambda + O(\lambda^2)$.
Step 3: comparision with “relativistic model”

Important fact: the function $\beta(...)$ vanishes asymptotically for $h \to -\infty$, and $\lambda^{(h)} \to \lambda_{-\infty} = \lambda + O(\lambda^2)$.

Relies on works by Benfatto-Mastropietro on a related model (Thirring model) where, essentially, the denominator

$$-i \sin k_1 + (-1)^{j+1} \sin k_2$$

in $\langle \psi_x, \gamma \psi_y, \gamma \rangle_0$ is linearized and replaced by

$$-i k_1 + (-1)^{j+1} k_2.$$

Uniform smallness of $\lambda^{(h)}$ guarantees convergence of perturbation expansion.
Analogy with the 2D Ising model

Let $\mu_{\Lambda,0}$ be the Gibbs measure of the nearest-neighbor 2D Ising model at T_c, and $\mu_{\Lambda,\lambda}$ the one with Hamiltonian perturbed by $\lambda \sum_{x,y} \nu(x - y) \sigma_x \sigma_y$, at its critical point $T_c(\lambda)$.

Greenblatt-Giuliani-Mastropietro '12: if $|\lambda| \leq \lambda_0$ and $\nu(\cdot)$ finite range, then (2) still true.
Let $\mu_{\Lambda,0}$ be the Gibbs measure of the nearest-neighbor 2D Ising model at T_c, and $\mu_{\Lambda,\lambda}$ the one with Hamiltonian perturbed by $\lambda \sum_{x,y} \nu(x-y)\sigma_x \sigma_y$, at its critical point $T_c(\lambda)$.

- The analog of dimer-dimer correlations are energy-energy correlations: if $|x - x'| = |y - y'| = 1$

 $$\mu_{\Lambda,0}(\sigma_x \sigma_{x'}; \sigma_y \sigma_{y'}) \approx |x - y|^{-2}.$$ \hspace{1cm} (2)

Greenblatt-Giuliani-Mastropietro '12: if $|\lambda| \leq \lambda_0$ and $\nu(\cdot)$ finite range, then (2) still true.
Analogy with the 2D Ising model

Let $\mu_{\Lambda,0}$ be the Gibbs measure of the nearest-neighbor 2D Ising model at T_c, and $\mu_{\Lambda,\lambda}$ the one with Hamiltonian perturbed by $\lambda \sum_{x,y} v(x - y) \sigma_x \sigma_y$, at its critical point $T_c(\lambda)$.

- The analog of (square of) spin-spin correlations $\mu_{\Lambda,\lambda}(\sigma_x; \sigma_y)$ is the “electric correlator”

$$\mathcal{E}(f, f') = \langle e^{i\pi \alpha(h(f) - h(f'))} \rangle_{\Lambda,\lambda}, \quad \alpha = 1.$$

Computation of $\mathcal{E}(f, f')$ is hard even for $\lambda = 0$, (Pinson ’04, Dubedat ’11).
Conclusions

• Novelties:
 • match between constructive QFT methods (huge literature) and some (simple) discrete complex analysis ideas
 • control of a non-local fermionic observable (height field) in a non-integrable case

While critical exponent of dimer-dimer correlations is not universal, large-scale GFF behavior is;

To be done (major difficulties):
 • get rid of periodic b.c., work with general domains (necessary to study e.g. conformal invariance).
 • control the exponential of the height function. Our result suggests:
 \[E(f, f') \approx |f - f'| - \alpha 2^{K(\lambda)} / 2 \]
Conclusions

- Novelties:
 - match between constructive QFT methods (huge literature) and some (simple) discrete complex analysis ideas
 - control of a non-local fermionic observable (height field) in a non-integrable case

- While critical exponent of dimer-dimer correlations is not universal, large-scale GFF behavior is;

- To be done (major difficulties):
 - get rid of periodic b.c., work with general domains (necessary to study e.g. conformal invariance).
 - control the exponential of the height function. Our result suggests:

\[\mathcal{E}(f, f') \approx |f - f'|^{-\alpha^2 K(\lambda)/2} \]